44 research outputs found

    Hyperplastic and hypertrophic growth of lateral muscle in blackspot seabream Pagellus bogaraveo from hatching to juvenile

    Get PDF
    To understand better the growth mechanisms in the economically important fish Pagellus bogaraveo, in terms of muscle fibre hyperplasia v. hypertrophy, the lateral muscle of this fish was studied morphometrically from hatching to juvenile comparing rostral and caudal locations. Fish were sampled at 0, 5, 23, 40, 70, 100, 140 and 180 days. Fibre types were first identified by succinate dehydrogenase (SDH) and immunostaining with a polyclonal antibody against fish slow myosin (4-96). Morphometric variables were then measured in transverse body sections, at both post-opercular and post-anal locations, to estimate the following variables: total muscle area [A (muscle)], total fibre number [N (fibres)], fibre number per unit area of muscle [N-A (fibres, muscle)] and cross-sectional fibre area [a (fibres)] of the two main muscle fibre types (white and red). Overall, growth throughout the various stages resulted from increases both in the number and in the size of muscle fibres, paralleled by an expansion of the [A (muscle)]. Nonetheless, that increase was not significant between 0-5 days on one hand and 100-140 days, on the other hand. On the contrary, the [N-A (fibres, muscle)] declined as the body length increased. Analysis of the muscle growth kinetics suggested that, within the important time frame studied, hyperplasia gave the main relative contribution to the increase of white muscle [A (white muscle)], whereas red muscle [A (red muscle)] mainly grew by hypertrophy, with both phenomena occurring at a faster pace posteriorly in the body. Finally, when comparing rostral and caudal locations, a greater [N (fibres)] and [A (muscle)] of the posterior white and red fibres were the consistent features. It was also observed that the proportion of the cross-sectional area of the myotomal muscle comprised of white muscle was greater in the anterior part of the fish

    Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles

    Get PDF
    A 12-week feeding trial was conducted to evaluate the effects of fish oil replacement by soybean oil, on lipid distribution and liver histology of two commercially important finfish species: rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax). Sea bass (16.2 +/- 0.5 g; mean +/- SD) and rainbow trout (52.1 +/- 0.5 g) juveniles were fed one of three isonitrogenous (500 g kg(-1) CP) and isoenergetic (19 kJ g(-1)) diets, containing 0% (control, diet A), 25% (diet B) and 50% (diet C) soybean oil. At the end of the experiment, lipid deposition was evaluated in muscle, liver and viscera. Cholesterol and triglycerides levels were also determined in plasma. Tissue total, neutral and polar lipid composition (g kg(-1) total lipids) showed no significant differences within species, regardless the dietary treatment. The same trend was observed for plasma parameters (P > 0.05). Viscera were the preferential tissue of lipid deposition, with 252-276 and 469-513 g kg(-1) total lipid content in trout and sea bass, respectively. Dietary fish oil replacement had no effect on either hepatic lipid droplets accumulation or degree and pattern of vacuolization in the observed liver sections. These data suggest that both sea bass and trout can be fed diets containing up to 50% soybean oil without adverse effects on tissue lipid composition or liver histology

    Polychaete (Alitta virens) meal inclusion as a dietary strategy for modulating gut microbiota of European seabass (Dicentrarchus labrax).

    Get PDF
    Recent research has revealed the significant impact of novel feed ingredients on fish gut microbiota, affecting both the immune status and digestive performance. As a result, analyzing the microbiota modulatory capabilities may be a useful method for assessing the potential functionality of novel ingredients. Therefore, this study aimed to evaluate the effects of dietary polychaete meal (PM) from Alitta virens on the autochthonous and allochthonous gut microbiota of European seabass (Dicentrarchus labrax). Two diets were compared: a control diet with 25% fishmeal (FM) and a diet replacing 40% of fishmeal with PM, in a 13- week feeding trial with juvenile fish (initial weight of 14.5 ± 1.0 g). The feed, digesta, and mucosa-associated microbial communities in fish intestines were analyzed using high-throughput sequencing of the 16S rRNA gene on the Illumina MiSeq platform. The results of feed microbiota analyses showed that the PM10 feed exhibited a higher microbial diversity than the FM diet. However, these feed-associated microbiota differences were not mirrored in the composition of digesta and mucosal communities. Regardless of the diet, the digesta samples consistently exhibited higher species richness and diversity than the mucosa samples. Overall, digesta samples were characterized by a higher abundance of Firmicutes in PM-fed fish. In contrast, at the gut mucosa level, the relative abundances of Mycobacterium, Taeseokella and Clostridium genera were lower in the group fed the PM10 diet. Significant differences in metabolic pathways were also observed between the FM and PM10 groups in both mucosa and digesta samples. In particular, the mucosal pathways of caffeine metabolism, phenylalanine metabolism, and sulfur relay system were significantly altered by PM inclusion. The same trend was observed in the digesta valine, leucine, and isoleucine degradation and secretion pathways. These findings highlight the potential of PM as an alternative functional ingredient in aquafeeds with microbiota modulatory properties that should be further explored in the future

    Expression of the myosin light chains 1, 2 and 3 in the muscle of blackspot seabream (Pagellus bogaraveo, Brunnich), during development

    Get PDF
    Previous studies on the histochemistry and immunoreactivity of fibres in lateral muscle of blackspot seabream indicated that there is a developmental transition in the composition of myofibnllar proteins, which presumably reflects changes in contractile function as the fish grows We hypothesize that the phenomenon underscores age and spatial differences in the expression of myosin light chains (MLC), not studied yet in this species In this study, we examined selected stages in the post-hatching development of the muscle of blackspot seabream hatching (0 days), mouth opening (5 days), weaning (40 days) and juveniles (70 days) The spatial expression of embryonic MLC 1 (MLC1), 2 (MLC2) and 3 (MLC3) was studied by in situ hybndization Overall, MLC expression patterns were overlapping and restricted to the fast muscle At hatching and mouth opening, all MLC types were highly expressed throughout the musculature in fast muscle The expression levels in fast muscle remained high until weaning when germinal zones appeared on the dorsal and ventral areas The germinal zones were characterized by small-diameter fast fibres with high levels of MLC expression This pattern persisted up to day 70, when the germinal zones disappeared and expression of MLCs was observed only in the smaller cells of the fast muscle mosaic These results support our hypothesis and, together with previous imuno-and histochemistry results, allow a better understanding of the mechanism of muscle differentiation and growth in fish beyond larval stages, and form- the basis for further comparative and experimental studies with this economically relevant specie

    Digestibility in selected rainbow trout families and modelling of growth from the specific intake of digestible protein

    Get PDF
    The experiments aimed to clarify variations in digestibility of dietary nutrients in rainbow trout. Furthermore, the objective was to study how differences in digestibility might be related to growth and feed utilisation at various growth rates. When comparing the results from the experiments it appeared that particularly protein digestibility was closely related to specific growth rate and feed conversion ratio at high growth rates. As a tool to visualise the relationship between protein digestibility and growth of rainbow trout a growth model was developed based on the specific intake of digestible protein, and general assumptions on protein content and protein retention efficiency in rainbow trout. The model indicated that increased protein digestibility only partly explained growth increase and that additional factors were important for growth increment

    Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae

    Get PDF
    The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry

    Characterisation and expression of calpain family members in relation to nutritional status, diet composition and flesh texture in gilthead sea bream (Sparus aurata).

    Get PDF
    Calpains are non-lysosomal calcium-activated neutral proteases involved in a wide range of cellular processes including muscle proteolysis linked to post-mortem flesh softening. The aims of this study were (a) to characterise several members of the calpain system in gilthead sea bream and (b) to examine their expression in relation to nutritional status and muscle tenderisation. We identified the complete open reading frame of gilthead sea bream calpains1-3, sacapn1, sacapn2, sacapn3, and two paralogs of the calpain small subunit1, sacapns1a and sacapns1b. Proteins showed 63-90% sequence identity compared with sequences from mammals and other teleost fishes, and the characteristic domain structure of vertebrate calpains. Transcripts of sacapn1, sacapn2, sacapns1a and sacapns1b had a wide tissue distribution, whereas sacapn3 was almost exclusively detected in skeletal muscle. Next, we assessed transcript expression in skeletal muscle following alteration of nutritional status by (a) fasting and re-feeding or (b) feeding four experimental diets with different carbohydrate-to-protein ratios. Fasting significantly reduced plasma glucose and increased free fatty acids and triglycerides, together with a significant increase in sacapns1b expression. Following 7 days of re-feeding, plasma parameters returned to fed values and sacapn1, sacapn2, sacapns1a and sacapns1b expression was significantly reduced. Furthermore, an increase in dietary carbohydrate content (11 to 39%) diminished growth but increased muscle texture, which showed a significant correlation with decreased sacapn1 and sacapns1a expression, whilst the other calpains remained unaffected. This study has demonstrated that calpain expression is modulated by nutritional status and diet composition in gilthead sea bream, and that the expression of several calpain members is correlated with muscle texture, indicating their potential use as molecular markers for flesh quality in aquaculture production

    Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth
    corecore